Know this proof. **ALL STEPS + JUSTIFICATIONS!**

Given: \(EF \parallel BC \).

Prove: \(\frac{AE}{EB} = \frac{AF}{FC} \)

\[\angle A \cong \angle A \text{ Reflexive Prop.} \]

\[\angle AEF \cong \angle ABC \text{ corresponding angles theorem} \]

\[\triangle AEF \sim \triangle ABC \text{ by AA} \]

\[\frac{AB}{AC} = \frac{AE}{AF} \quad \text{corresponding parts are proportional} \]

\[\frac{AE + EB}{AC} = \frac{AF + FC}{AF} \]

\[\frac{AE}{AC} + \frac{EB}{AC} = \frac{AF}{AF} + \frac{FC}{AF} \]

\[1 + \frac{EB}{AC} = 1 + \frac{FC}{AF} \]

\[\frac{EB}{AC} = \frac{FC}{AF} \]

\[\frac{AE}{EB} = \frac{AF}{FC} \]

What is the value of \(x \) in these pictures?

1.

\[\frac{10}{15} = \frac{12}{RS} \quad x = 18 \]

2.

\[\frac{1}{4} = \frac{1}{x} \quad x = 4 \]

Is each set of lines parallel? How do you know?

3. \(\overline{QP} \parallel \overline{MN} \)

4. \(\overline{WX} \parallel \overline{DE} \)

\[\frac{9}{40} = \frac{12}{80} \checkmark \text{ by the converse of the } \Delta \text{ prop. then } \overline{QP} \parallel \overline{MN} \]

\[\frac{15}{2.5} = \frac{21}{3.5} \checkmark \text{ by the converse of the } \Delta \text{ prop. then } \overline{WX} \parallel \overline{DE} \]

5. A person who is 6 feet tall casts a shadow of 3.2 feet. A building at the same time of day casts a shadow of 18.5 feet. How tall is the building? Draw a picture.

\[\frac{6}{3.2} = \frac{x}{18.5} \]

\[x \approx 347 \text{ ft} \]
Find the point, P, that divides each directed line segment in the ratio provided.

6. A (-1, 4) B (-9, 0); 1 to 3

7. A (7, -3) B (-7, 4); 3 to 4

8. A (-1, 5) B (7, -3); 7 to 1

Write a similarity statement comparing the three triangles in each diagram.

9. \[\Delta JML \sim \Delta LMK \sim \Delta JLMK \]

10. \[\Delta EOF \sim \Delta DFG \sim \Delta EOFD \]

11. \[\Delta XYZ \sim \Delta WYZ \sim \Delta XYZY \]

Write in simplest radical form.

Find \(x \), \(y \), and \(z \). Round to the nearest tenth if necessary.

12. \[x = \sqrt{35} \]
\[y = 2\sqrt{15} \]
\[z = 2\sqrt{21} \]

13. \[x = 10 \]
\[y = 10y \]
\[z = 2y \]

14. \[x = 2 \]
\[y = \sqrt{15} \]
\[z = \sqrt{10} \]