minder: Exponential Functions have the form $f(x) = a \cdot b^x$ where $a \neq 0, b \neq 1$, and $a \neq 0$

Then will b be the "growth rate"?

When will b be the "decay rate"?

1. Use the function $f(x) = 3 \cdot 5^{x}$

a, What is f(x + 2) written out as a new function? $\frac{4}{3} = 3.5 \times 2$ b. Write your new function in the form $f(x) = a \cdot b^x$ to highlight the y-intercept.

the your new function in the form
$$f(x) = \frac{1}{3}$$

c. SKETCH a graph of f(x) + 2. What is the horizontal asymptote?

d. What is the end behavior for
$$-f(x)$$
?

As $x \to \infty$, $f(x) \to -\infty$, $f(x) \to -\infty$.

e. What is the average rate of change for f(x) on the interval [-1,2]?

(-1, 3/5) (2, 75)
$$\frac{75-3/5}{2-(-1)}$$
 $\frac{74^2/5}{3}$ $+$ 24.8

2. Write a function for this table:

	X	У
a function for this table:	-2	1/5
	-1	1
	0	5
3-1	1	25
	2	125

$$f(x) = 5^{x+1}$$

$$f(x) = 5^{t} 5^{x}$$
If rabbits is 4% per year.

3. In the absence of predators, the growth rate of rabbits is 4% per year. A population begins with 100 rabbits.

a. Write a function to model this situation: π

b. How long will it take for the population to double?

who was interest on the

ompound Interest

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Where.

- P = principal amount (initial investment)
- r = annual nominal interest rate (as a decimal)
- n = number of times the interest is compounded per year

12420

t = number of years

Write a function for the following:

1. \$25,000 invested at a rate of 6% compounded annually for 12 years.

2. \$40,000 invested at a rate of 12% compounded monthly

Evaluate both functions for 5 years:

\$72,667.87

3. \$125,000 invested at a rate of 6% compounded quarterly (4 times a year)

Evaluate both functions for 3 years.

4. Why do you get more money when compounding an interest rate of 7% monthly instead of annually?

getting interest on the

1.	State the domain, range, end hebavior	Exponential Functions Day 5
	The City hands	

	no behavior v	interioris Day 5	
	γ-	intercept and asymptote for: $f(x)$	- 2(E)2x
m omain:		f where f f f f	$= -2(5)^{-1}$
Range			

End Behavior:

y-intercept:

Asymptote:

2. SKETCH $y = 3^x + 2$. Make sure and sketch the asymptote as well.

End Behavior:

Range (Interval Notation):

3. Create a table of values from [-2, 2] for $g(x) = 2^{2x} + 4$

х	g(x)
	1

- 4. Write the exponential function for the following coordinates: (-2, 1/64), (-1, 1/8), (0, 1), (1, 8), (2, 64)
- 5. If $f(x) = 5^x$ and $g(x) = \frac{1}{2} \cdot 5^{x-4} + 1$ Create the new table of values from the original table.

x	f(x)	х	g(x)
-2	1/25		
-1	1/5		
0	1		
1	5		
2	25		

6. An acidophilus culture containing 150 bacteria doubles in population every hour. Write a function representing the bacteria population for every hour that passes. Find the population of bacteria after 12 hours.

A. _____

B. ____

7. A softball dropped onto a hard surface from a height of 25 inches rebounds to about 2/5 the height on each uccessive bounce. Write a function representing the rebound height for each bounce