need a calculator γ textbook
Warm Up:
If a ship had 26 sheep
and 10 goats onboard,
how old is the ship's captain?

Objective: Explore Triangle Proportionality Theorem

Artists use mathematical techniques to make 2-D paintings appear 3-D. The invention of perspective was based on the observation that far away objects look smaller and closer objects look larger.

Mathematical theorems like the Triangle Proportionality Theorem are important in making perspective drawings.

Exploration

- Do pg. 881 (A - E)

Given: $\overline{E F} \| \overline{B C} \quad$ Prove: $\frac{A \epsilon}{\epsilon B}=\frac{A F}{F C}$
(1) $\angle A \cong \angle A$ Reflexive Property
$\angle A E F \cong \angle A B C$ corresponding angles
$\triangle A B C \sim \triangle A C F$ by $A A \sim$
(2)

$$
\begin{aligned}
& \frac{A B}{A \epsilon}=\frac{A C}{A F}(b / c \Delta \text { are } \sim) \\
& \frac{A \epsilon+E B}{A E}=\frac{A F+F C}{A F} \quad \frac{2+3}{4}=\frac{2}{4}+\frac{3}{4}
\end{aligned}
$$

(3)

$$
\begin{gathered}
\frac{A \epsilon}{A \epsilon}+\frac{\epsilon B}{A \epsilon}=\frac{A F}{A F}+\frac{F C}{A F} \\
1+\frac{\epsilon B}{A \epsilon}=1++\frac{F C}{A F} \\
T \frac{G B}{A \epsilon}=\frac{F C}{A F} \\
\frac{A \epsilon}{E B}=\frac{A F}{F C}
\end{gathered}
$$

Find US.

$\frac{10}{4}=\frac{14}{x}$
$x=5.6$

Do pg. 884 (5 and 6)

$$
\frac{32}{24}=\frac{40}{x}
$$

5. $\overline{D G}$

$$
\begin{aligned}
& \frac{E C}{C F}=\frac{E D}{D G} ; \frac{32}{24}=\frac{40}{D G} ; \frac{24}{32}=\frac{D G}{40} \\
& 40\left(\frac{24}{32}\right)=D G ; D G=\frac{960}{32}=30
\end{aligned}
$$

6. $\overline{R N}$

$$
\begin{aligned}
& \frac{M R}{R N}=\frac{M Q}{Q P} ; \frac{10}{R N}=\frac{8}{5} ; \frac{R N}{10}=\frac{5}{8} ; R N=\left(\frac{5}{8}\right) 10 \\
& R N=\frac{50}{8}=\frac{25}{4} \text { or } 6 \frac{1}{4}
\end{aligned}
$$

$$
\frac{8}{5}=\frac{10}{x}
$$

Theorem 7-4-2 Converse of the Triangle Proportionality Theorem

THEOREM	HYPOTHESIS	CONCLUSION	
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.			

Given: $\frac{A \epsilon}{\epsilon B}=\frac{A F}{F C} \quad$ Prove: $\overleftrightarrow{E F} \| \overline{B C}$
(1)

$$
\begin{aligned}
& \frac{\epsilon B}{A \epsilon}=\frac{F C}{A F} \\
& \frac{A E}{A \epsilon}+\frac{E B}{A \epsilon}=\frac{A F}{A F}+\frac{F C}{A F} \\
& \frac{A \epsilon+G B}{A \epsilon}=\frac{A F+F C}{A F}
\end{aligned}
$$

(2) $\frac{A B}{A E}=\frac{A C}{A F}, \quad \angle A \cong \angle A$ Reflexive Prop.

$$
\triangle A B C \sim \triangle A E F \quad S A S \sim
$$

(3) $\angle A E F \cong \angle A B C$ (b/c Δs ave ~) $\overrightarrow{G F} \| B C$ converse of corresponding is the oren

Verify that $\overline{D E} \| \overline{B C}$

$\frac{8}{12}=\frac{10}{15}$
by the converse of
$T P T \quad D E \| B C$

$A C=36 \mathrm{~cm}$, and $B C=27$

cm. Verify that $\overline{D E} \| \overline{A B}$

$$
\begin{aligned}
& \text { (} \\
& \text { converse of } \\
& \overline{D E} \| \overline{A B}
\end{aligned}
$$

Use the diagram to find $L M$ and $M N$ to the nearest

$$
\frac{2.4}{2.6}=\frac{1.4}{L M}
$$ tenth.

Algebra For what value of x is $\overline{G F} \| \overline{H /}$?

pg. 887 (3-10)

