DO YOUR THURSDAY WARM UP

And have your homework out!

pg. 795- 796 (4-11)

Postulate

a statement that is accepted without Proof (see back)

 If three points are collinear, then the lengths of the two shorter segments equals the length of the larger segment.

pg. 777

Segment Addition Postulate

Let A, B, and C be collinear points. If B is between A and C, then AB + BC = AC

Notice: this means the length of segment \overline{AB} plus the length of segment \overline{BC} equals the length of segment \overline{AC}

Angle Addition Postulate

• If S is in the interior of $\angle PQR$, then $m\angle PQR = m\angle PQS + m\angle SQR$.

pg. 792

G is between *F* and *H*, *FG* = 6, and *FH* = 11. Find *GH*.

E is between *D* and *F*. Find *DF*.

S is the midpoint of RT. Find RS, ST, and RT.

$$RS = 4$$
 $ST = 4$ $RT = 8$

$m \angle XWZ = 121^{\circ}$ and $m \angle XWY = 59^{\circ}$. Find m∠YWZ.

 $m \angle YWZ = m \angle XWZ - m \angle XWY \angle Add.$ Post.

 $m \angle YWZ = 121^{\circ} - 59^{\circ}$ Substitute the given values.

 $m \angle YWZ = 62^{\circ}$

Subtract.

KM bisects $\angle JKL$. Find m $\angle JKM$.

m∠*JKM* = 30°

$m \angle WYZ = (2x - 5)^{\circ}$ and $m \angle XYW = (3x + 10)^{\circ}$. Find the value of x.

BD bisects $\angle ABC$, m $\angle ABD = \left(\frac{1}{2}y + 10\right)^{\circ}$ and m $\angle DBC = (y + 4)^{\circ}$. Find m $\angle ABC$. **32°**

WORKSHEET