

- "Motions that preserve the size and shape of figures"
- Who can name some Rigid Motions that we know???

Rotations, Replactions, Traghtions

OBJECTIVE: WHAT DOES CONGRUENT MEAN???

Some other symbols to know

ll parallel

⊥ perpendicular

Congruent = same size, same shape

- All the angles are the same
- All the side lengths are the same

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
$A \xrightarrow{F} B \xrightarrow{F} B \xrightarrow{F} F$ $\triangle ABC \cong \triangle DEF$	$\angle A \cong \angle D$ $\angle B \cong \angle E$ $\angle C \cong \angle F$	$\overline{AB} \cong \overline{DE}$ $\overline{BC} \cong \overline{EF}$ $\overline{AC} \cong \overline{DF}$
P = P = Q $Z = P = W$ $S = P = R$ $Z = P = W$	$\angle P \cong \angle W$ $\angle Q \cong \angle X$ $\angle R \cong \angle Y$ $\angle S \cong \angle Z$	$\overline{PQ} \cong \overline{WX}$ $\overline{QR} \cong \overline{XY}$ $\overline{RS} \cong \overline{YZ}$ $\overline{PS} \cong \overline{WZ}$

Highlight! pg. 910

Corresponding Parts of Congruent Figures Are Congruent

If two figures are congruent, then corresponding sides are congruent and corresponding angles are congruent.

Helpful Hint

When you write a statement such as $\triangle ABC \cong \triangle DEF$, you are also stating which parts are congruent!!!

If polygon *LMNP* \cong polygon *EFGH*, identify all pairs of corresponding congruent parts.

$$21=2E$$

 $2M\cong 2F$
 $2N\cong 2G$
 $2N\cong 2G$

Let's Look at Example A on pg. 910

.

Example 1
$$\triangle ABC \cong \triangle DBF$$
. Find the given side length or angle measure.
(A) DE
Step 1 Find the side that corresponds to \overline{DE} .
Step 1 Find the side that corresponds to \overline{DE} .
Step 1 Find the volume with movements $ABC \cong \triangle DEF$, $\overline{ABC} \cong \overline{DE}$.
Step 1 Find the volume with movements $AB \cong B$ cm
 $B = 2.6 \text{ cm}$
 $B = 3.7 \text{ cm}$
 $C = 42^{\circ} - 65^{\circ} \text{ E}$
 2.6 cm
 $B = 3.7 \text{ cm}$
 2.6 cm
 $B = 3.7 \text{ cm}$
 $C = 2.6 \text{ cm}$

Try Part B on pg. 910!

Step 1 Find the angle that corresponds to $\angle B$.

Since $\triangle ABC \cong \triangle DEF$, $\angle B \cong \angle E$.

Step 2 Find the unknown angle measure.

$$m \angle B = m \angle E$$
, and $m \angle E = 65$ °, so $m \angle B = 65$ °.

Try Questions 3 – 5 on pg. 911

3. Discussion The triangles shown in the figure are congruent. Can you conclude that $\overline{JK} \cong \overline{QR}$? Explain.

 $\triangle STU \cong \triangle VWX$. Find the given side length or angle measure.

'+ assume ~

Try Questions 6-7 on pg. 912

Quadrilateral *GHJK* \cong quadrilateral *LMNP*. Find the given side length or angle measure.

Properties of Equality	
Reflexive Property of Equality	a = a
Symmetric Property of Equality	If a = b then b = a
Transitive Property of Equality	If a = b and b = c then a = c

Highlight pg. 911

Properties of Congruence	
Reflexive Property of Congruence	$\overline{AB} \cong \overline{AB}$
Symmetric Property of Congruence	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AQ}$.

pg. 912

Exar	nple 3	Write each proof.	А	
A	Given: Z Prove: L	$\Delta ABD \cong \Delta ACD$ D is the midpoint of \overline{BQ} .	B	c
		Statements	Reasons	
	1. △/	$ABD \cong \triangle ACD$	1. Given	
	2. BD	$\overline{CD} \cong \overline{CD}$	 Corresponding parts of congruent figures are congruent. 	
	3. D i	s the midpoint of \overline{BC} .	3. Definition of midpoint.	

Given: Quadrilateral JKLM \cong quadrilateral NPQR; $\angle J \cong \angle K$

Prove: $\angle J \cong \angle P$

What do we KNOW?

What are we trying to prove?

Try B on pg. 913

Given: Quadrilateral JKLM \cong quadrilateral NPQR; $\angle J \cong \angle K$ Prove: $\angle J \cong \angle P$

Г

" GIVEN"
2. GIVENU
3. Corr parts of = figures
4. Transitive Property

Now try 8 – 12 on pgs. 913- 914

Yo	ur Turn	V
Wr	ite each proof.	
8.	Given: $\triangle SVT \cong \triangle SWT$	ogles state
	Prove: \overline{ST} bisects $\angle VSW$	
	Statenerty	reesing
	DSVTZ DSWT	Given 1
	ZVST=L TSW	Con parts of = figures
	ST bisects LVSW	definition of angle bisector

9. Given: Quadrilateral $\underline{ABCD} \cong \underline{\text{quadrilatera}}$ $\overline{AD} \cong \overline{CD}$ Prove: $\overline{AD} \cong \overline{GH}$	$\begin{array}{cccc} \underline{al \ EFGH;} & A & B & E & F \\ & & & & \\ & & & & \\ D & & C & H & G \end{array}$
statements	reasons
$ABCD \cong EFGH$ $AD \cong CD_{b}$ $CD \cong GH$ $AD \cong GH$	Given !! Given !! Corr poss of = Figues re = Transithe Property