PROVING the angle sum of a triangle with parallel lines...
Sum of the angles in a $\Delta=180^{\circ}$

$m \angle 1=m \angle 4$ alt interior $m \angle 3=m \angle S$ altinte or $m \angle 4+m \angle 2+m \angle S=180$ (line

$$
m \angle 1+m \angle 2+m \angle 3=180
$$

substitution

A statement and its converse

- "If two angles are a linear pair, then they are supplementary."
- The converse:
- "If two angles are supplementary, then they are a linear pair."
- Can you come up with another if-then statement that is true but the converse would be false?
- Can you come up with one where the converse is also true?

Would the converse be true?

- If two angles are vertical, then they are congruent.
- "If two angles are congruent, then they are vertical
- If an angle is acute, then its supplement is obtuse.
- "If an angle's supplement is obtuse, then the angle is acute."
- If you add two even numbers, then their sum will be even.
- "If the sum of two numbers is even, then the two numbers are even.

$$
3+1=4
$$

Write the converse of each statement.

1. If $a=b$ then $a+c=b+c$.

If $a+c=b+c$, then $a=b$.
2. If $\mathrm{m} \angle A+\mathrm{m} \angle B=90^{\circ}$, then $\angle A$ and $\angle B$ are complementary.
If $\angle A+\angle B$ are complenaty, then

$$
m \angle A+m \angle B=90^{\circ} .
$$

3. If $A B+B C=A C$, then A, B, and C are ${ }^{B}$ collinear.

If A, B_{1} Core collinear, then $A B+B C=A C$

Same Side Interior Angles Postulate:

$$
\begin{aligned}
& \text { If two parallel lines are cut by a } \\
& \text { transversal, then the pairs of same-side } \\
& \text { interior angles are supplementary }
\end{aligned}
$$

Converse of the Same Sides Interior Angles Theorem

- If two lines are cut by a transversal so that a pair of same-side interior angles are supplementary, then the lines are parallel

Some Side Intenor Angles Postulate If

then

Converse

then

Corresponding Angles Postulate

Converse of the Corresponding Angles Postulate

- If two lines are cut by a transversal so that any pair of corresponding angles are congruent, then the lines are parallel.

Cocresponding Ls Theoren
If
 then $\frac{1}{\frac{1}{2}} 4 \equiv<2$

If

, then

Converse of the Alternate Interior Angles Theorem

- If two lines are cut by a transversal so that any pair of alternate interior angles are congruent, then the lines are parallel.

Converse of the Alternate Exterior Angles Theorem

- If two lines are cut by a transversal so that any pair of alternate exterior angles are congruent, then the lines are parallel.

Which lines are parallel if $<9 \cong<13$?
line $j / 1$ line k by the convene of

Is $\boldsymbol{\ell} \| \boldsymbol{m}$? Explain using a converse.

yes by the converse of the alternate interior angles theorem, $\ell^{\prime \prime} m$

Is $\boldsymbol{\ell} \| \boldsymbol{m}$? Explain using a converse.
yes by the converse of the alternate exterior angles theorem $\xrightarrow{\text { elm }}$ || parallel

A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. $m \angle 1=(8 x+2)^{\circ}$ and $m \angle 2=(2 x+10)^{\circ}$. If $x=15$, is A parallel to B ?

Piece A
Piece B

12

What if...? Suppose the corresponding angles on the opposite side of the boat measure $(4 y-2)^{\circ}$ and $(3 y+6)^{\circ}$, where $y=8$. Are the oars parallel?

$$
\text { yes } \rightarrow
$$

Converse of the corresponding angles theorem

Find the value of x so that the two lines are parallel.

I need a volunteer!

Draw a point that is equidistant (equal distance) from A and B

Perpendicular Bisector Theorem

- If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment

Use the diagram shown. $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$.

4. Suppose $E D=16 \mathrm{~cm}$ and $D A=20 \mathrm{~cm}$. Find $D C$.
5. Suppose $E C=15 \mathrm{~cm}$ and $B A=-25 \mathrm{~cm}$. Find $B C$.

25 cm

Given: $\overline{A C}$ is the perpendicular bisector of $\overline{\mathbf{G H}}$.

