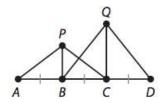

Parallel Lines III

Use the figure for Problems 1–4. Tell whether lines m and n must be parallel from the given information. If they are, state your reasoning (use a converse).


3.
$$m \angle 4 + m \angle 3 = 180$$

4.
$$m \angle 2 + m \angle 3 = 180$$

Use the diagram to find the lengths. \overline{BP} is the perpendicular bisector of \overline{AC} . \overline{CQ} is the perpendicular bisector of \overline{BD} . AB = BC = CD.

5. Suppose AP = 5 cm. What is the length of \overline{PC} ?

6. Suppose AP = 5 cm and BQ = 8 cm. What is the length of \overline{QD} ?

Write the equation described in each case. The first one is done for you.

7. a line perpendicular to $y = \frac{1}{3}x + 6$

through (3, 2)

equation: y = -3x + 11

8. a line perpendicular to y = 5x - 2

through (-10, 6)

slope of the new line: _____

equation:

9. a line perpendicular to y = 2x + 4

through (4, 2)

slope of the new line:

equation:

10. a line parallel to $y = -\frac{1}{4}x - 11$

through (4, -5)

slope of the new line:

equation:

11. a line parallel to y = 3x + 4

through (12, 10)

slope of the new line: _____

equation:

12. a line parallel to y = 4x + 2

through (-1, 3)

slope of the new line:

equation: _____