Rational Exponents

Simplify each expression.

All variables represent nonnegative numbers.

1.
$$27^{\frac{1}{3}}$$

2.
$$121^{\frac{1}{2}}$$

3.
$$0^{\frac{1}{3}}$$

$$4. \ \ \frac{1}{64^2} + \frac{1}{27^3}$$

5.
$$16^{\frac{1}{4}} + 8^{\frac{1}{3}}$$

6.
$$100^{\frac{1}{2}} - 64^{\frac{1}{6}}$$

7.
$$\frac{1}{15} + 49^{\frac{1}{2}}$$

8.
$$25^{\frac{3}{2}}$$

9.
$$32^{\frac{3}{5}}$$

10.
$$16^{\frac{3}{4}}$$

12.
$$121^{\frac{3}{2}}$$

13.
$$\sqrt[5]{y^5}$$

14.
$$\sqrt{x^4y^{12}}$$

15.
$$\sqrt[3]{a^6b^3}$$

16.
$$(x^{\frac{1}{2}})^4 \sqrt{x^6}$$

17.
$$(x^{\frac{1}{3}}y)^3\sqrt{x^2y^2}$$

Explain the Error Yuan is asked to evaluate the expression $(-8)^{\frac{2}{3}}$ on his exam, and writes that it is unsolvable because you cannot evaluate a negative number to an even fractional power. Is he correct, and if so, why? If he is not correct, what is the correct answer?

Name	Date	Class