WARMUP

- Is this an arithmetic or geometric sequence?
- Write the recursive rule for the sequence:

RETURN OF THE QUIZZES

HW CHECK

ALTERNATE NOTATION FOR SEQUENCES...

- Although subscript notation is the most common way to write sequences, you can also use function notation.
\square can also be written as
\square can also be written as
(2) can also be written as
- etc.

Write the recursive rule for the sequence. Use function notation!

$$
\begin{aligned}
& \mathbf{3 , 2 3}, \mathbf{4 3}, \mathbf{6 3}, \ldots \\
& f(1)=3 ; \\
& f(n)=f(n-1)+20
\end{aligned}
$$

Write the recursive rule for the sequence. Use function notation.

6, I2, 24, 48,...
$\mathrm{f}(\mathrm{I})=6$;
$f(n)=2 \cdot f(n-I)$

Write the recursive rule for the sequence.

$$
\begin{aligned}
& \mathbf{I} / 2,\|/ 8,\| / 32,\|/\| 28, \ldots \\
& f(I)=\frac{1}{2} \\
& f(n)=\frac{1}{4} \bullet f(n-I)
\end{aligned}
$$

WHAT ARE THE FIRST FOUR TERMS OF THE EQUENCE DEFINED BY THE RECURSIVE RULE

$$
\begin{gathered}
a_{1}=4 \\
a_{n}=a_{n-1}+5
\end{gathered}
$$

4, 9, 14, 19

WHAT ARE THE FIRST FOUR TERMS OFTHE SEQUENCE DEFINED BYTHE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n}=5 \cdot a_{n-1}
\end{gathered}
$$

4, 20, 100,500

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUENCE DEFINED BYTHE RECURSIVE RULE?

$$
\begin{gathered}
a_{1}=4 \\
a_{n+1}=a_{n}+8
\end{gathered}
$$

$$
4,12,20,28
$$

WHAT ARE THE FIRST FOUR TERMS OF THE SEQUEN DEFINED BY THE RECURSIVE RULE?

$$
\begin{aligned}
a_{1} & =4 \\
a_{n+1} & =3 \cdot a_{n}
\end{aligned}
$$

$$
4,12,36,108
$$

Margaret adopted 5 cats from the shelter. Each year, she adopts 3 more cats. Let $\mathrm{f}(1)=5$ represent the number of cats Margaret had the first year. Which recursive formula could you use to find the total number of cats Margaret will have after x years?
A. $f(x)=3 \cdot f(x+1) \quad$ C. $f(x)=f(x+1)+3$
B. $f(x+1)=3 \cdot f(x)$ D. $f(x+1)=f(x)+3$

Describe, using words, what each of these expressions mean.
I. a_{14} The $14^{\text {th }}$ term
2. a_{n} The " n th" term (current term)
3. a_{n-1} Previous term
4. $\mathbf{f}(\mathbf{n}+\mathrm{I})$ Next term
5. \mathbf{n} Position number of the current term
6. $f(I) I^{\text {st }}$ term
7. What is the difference between " n " and " $f(n)$)"?

Explain. n is a position number. $f(n)$ is the actual value of the term.

WRITEA RECURSIVE RULE FOR THE FIBONACCI SEQUENCE

$$
\begin{gathered}
\square \mid, I, 2,3,5,8, \ldots \\
f(1)=1 \\
f(2)=1 \\
f(n)=f(n-I)+f(n-2) \text { for } n>2
\end{gathered}
$$

The first term in a sequence is 8 . Consecutive terms in the sequence have a common difference. The fourth term in the sequence is 17.

Select the function, $f(n)$, that represents this sequence for $n \geq 1$.
A. $f(1)=8$

$$
f(n+1)=f(n)-3
$$

B. $f(1)=8$

$$
f(n+1)=f(n)+3
$$

$$
f(1)=8
$$

C. $f(n+1)=\frac{9}{4} f(n)$

$$
f(1)=8
$$

D. $f(n+1)=\frac{17}{8} f(n)$
B

Find the indicated term of the arithmetic sequence.

$$
\begin{aligned}
& \text { Find } a_{5} \text { : } \\
& a_{1}=3 \\
& a_{n}=a_{n-1}-13
\end{aligned}
$$

-49

Find the indicated term of the arithmetic sequence.

The 8th term: $a_{1}=I I ; d=3$

32

Find the indicated term of the arithmetic sequence.

Find $\mathrm{a}_{60}: I I, 5,-I,-7, \ldots$
-343

