Write a similarity statement comparing the three triangles.

Write a similarity statement comparing the three triangles.

Write a similarity statement comparing the three triangles.

The altitude to the hypotenuse of a right triangle forms two triangles that are similar to each other and to the original triangle.

 $\triangle ABC \sim \triangle ACD \sim \triangle CBD$

The geometric mean of two positive numbers is the positive square root of their product.

Geometric Means Theorems		
Theorem	Example	Diagram
The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.	$\frac{h^2 = xy}{h = \sqrt{xy}}$	a k c y b
The length of a leg of a right triangle is the geometric mean of the lengths of the hypotenuse and the segment of the hypotenuse adjacent to that leg.	$a^{2} = xc$ or $a = \sqrt{xc}$ $b^{2} = yc$ or $b = \sqrt{yc}$	

 $h^2 = XY$

Find x, y, and z.

Find x, y, and z.

Find *u*, *v*, and *w*.

$$AP^{2} = 3.4$$

 $81 = 34$
 $27 = 4$

- three triangles. $\Delta RST \sim \Delta RPS \sim \Delta SPT$
- **4.** If *PS* = 6 and *PT* = 9, find *PR*. **4**
- **5.** If TP = 24 and PR = 6, find RS. $6\sqrt{5}$

Classwork

PG. 921 (1 − 3, 10 − 12)

EXCLAIMAGENER

 $\triangle PQR \sim \triangle SPR \sim \triangle SQP$ $\triangle BDE \sim \triangle EDC \sim \triangle BEC$

4225= 625+25x =60 '= 144 5

