Write a similarity statement comparing the three triangles.

$$
\left\{\begin{array}{l}
m \angle L+m \angle L J M=90^{\circ} \\
m \angle L+m \angle K=90^{\circ} \\
\angle K \cong \angle J M
\end{array}\right.
$$

Write a similarity statement comparing the three triangles.

Write a similarity statement comparing the three triangles.

$\Delta U v W$ ~ $\operatorname{\Delta uWz\sim \Delta WVZ~}$
$\triangle V W U \sim \Delta W Z \cup \sim \Delta V Z \omega$

The altitude to the hypotenuse of a right triangle forms two triangles that are similar to each other and to the original triangle.

$$
\triangle A B C \sim \triangle A C D \sim \triangle C B D
$$

The geometric mean of two positive numbers is the positive square root of their product.

Geometric Means Theorems

Theorem	Example	Diagram
The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.	$h^{2}=x y r$ $h=\sqrt{x y}$	
The length of a leg of a right triangle is the geometric mean of the lengths of the hypotenuse and the segment of the hypotenuse adjacent to that leg.	$\left.a^{2}=x c\right) r$ $b^{2}=\sqrt{x c}$	

Remember:
The Pythagoseun Theoren

$$
a^{2}+b^{2}=c^{2}
$$

$$
h^{2}=x y
$$

Find x, y, and z.

1) Find X

$$
\begin{aligned}
6^{2} & =9 \cdot x \\
36 & =9 x \\
4 & =x
\end{aligned}
$$

$$
a^{2}=x c
$$

Find x, y, and z.
2) Find y.

$$
\begin{aligned}
& y^{2}=13.4 \\
& y=\sqrt{52}=\sqrt{52} \\
& y=2 \sqrt{13}
\end{aligned}
$$

$$
b^{2}=y c
$$

Find x, y, and z.
3) Find z

Find u, v, and w.

$$
* 9^{2}=3 \cdot u
$$

$$
\begin{aligned}
& 81=3 u \\
& 27=u
\end{aligned}
$$

Find u, v, and w.

$$
\begin{aligned}
& w^{2}=30(27) \\
& w^{2}=810 \\
& \omega=9 \sqrt{10}
\end{aligned}
$$

Find u, v, and w.

$$
\begin{array}{lll}
V^{2}=30(3) \\
V^{2}=90 \\
V=3 \sqrt{10}
\end{array} \quad .27 \quad 3
$$

Review Part II

For Items 3-5, use Δ RST.

3. Write a similarity statement comparing the three triangles. $\triangle R S T \sim \triangle R P S \sim \triangle S P T$
4. If $P S=6$ and $P T=9$, find $P R .4$
5. If $T P=24$ and $P R=6$, find $R S . ~ 6 \sqrt{5}$

Classwork

$$
\text { PG. } 921(1-3,10-12)
$$

$\triangle P Q R \sim \triangle S P R \sim \triangle S Q P$

$\triangle B D E \sim \triangle E D C \sim \triangle B E C$
3.

$\triangle X Y Z \sim \triangle X W Y \sim \triangle Y W Z$

Find $x_{1} y_{\text {; }}$ and $z_{\text {. }} \quad y^{2}=25 \cdot x$
10.

$$
65^{2}=(25+x) 25
$$

${ }^{11 .}$

$$
\begin{aligned}
& y^{2}=70(30) \\
& y^{2}=2100 \\
& y=10 \sqrt{21}
\end{aligned}
$$

Altiude

$$
\begin{aligned}
& x^{2}=30(40) \\
& x^{2}=1200 \\
& x=\sqrt{1200} \\
& x=20 \sqrt{3} \\
& \text { Leg } \\
& z^{2}=70(40) \\
& z^{2}=2800 \\
& z=\sqrt{2800} \\
& z=20 \sqrt{7}
\end{aligned}
$$

