Foil:

$$
(p+l)(a+n)
$$

Staircase Problem

Come up with an example of a binomial times a binomial that equals a binomial

$$
(x-1)(x+1)
$$

CHECK HOMEWORK

QUIZ MONDAY

Classifying Polynomials
Adding and Subtracting Polynomials Multiplying Polynomials (including special products)

Objective

Find special products of binomials.

A perfect-square trinomial is a trinomial that is the result of squaring a binomial.

Do you see a pattern? 1) $(x+6)^{2} \neq x^{2}+36$

$$
(x+6)(x+6) \quad x^{2}+12 x+36
$$

2) $(x+3)^{2}$

$$
x^{2}+6 x+9
$$

3) $(x-1)^{2}$

$$
x^{2}-2 x+1
$$

Do you see a patten?

1) $\underset{2(5 a b)}{(5 a+b)^{2}} 25 a^{2}+10 a b+b^{2}$
2) $\underset{2(4 a-1))^{2} \quad\left(6 a^{2}+8 a+1\right.}{(4 a}$
3) $\underset{\text { 2 }[4 x(3 y)]}{(4 x+3 y)]^{2} 16 x^{2}+24 x y+9 y^{2}}$

Can you apply the pattern here?

$$
\begin{aligned}
& \text { Multiply. } \\
& \text { A. }(x-6)^{2} \\
& (x-6)(x-6) \\
& 2[x(-6)]
\end{aligned} x^{2}-12 x+36
$$

B. $(4 m-10)^{2}$

$$
\begin{aligned}
& (4 m-10)(4 m-10) \\
& 16 m^{2}-80 m+100
\end{aligned}
$$

Can you apply the pattern here?
Multiply.
C. $(2 x-5 y)^{2}$

$$
\frac{4 x^{2}-20 x y+25 y^{2}}{4 x^{2}+25 y^{2}-20 x y}
$$

D. $\left(7-r^{3}\right)^{2}$

$$
r^{6}-14 r^{3}+49
$$

Difference of Squares: It is the result of multiplying $(a-b)(a+b)$.

Do you see a pattern?

1) $(x+4)(x-4) \quad x^{2}-16$
2) $(x+10)(x-10)$
$x^{2}-100$
3) $(2 x+1)(2 x-1) \quad 4 x^{2}-1$

Do you see a patten?

1) $\left(p^{2}+8 q\right)\left(p^{2}-8 q\right) p^{4}-64 q^{2}$
2) $\left(x^{3}-2\right)\left(x^{3}+2\right)$
$\left(p^{2}\right)^{2}$
$(8 \xi)^{2}$

Multiply.

1. $(x+7)^{2} \quad x^{2}+14 x+49$
2. $(x-2)^{2} \quad x^{2}-4 x+4$
3. $(5 x+2 y)^{2} \quad 25 x^{2}+20 x y+4 y^{2}$
4. $(2 x-9 y)^{2} 4 x^{2}-36 y y^{2}+81 y^{2}$

$$
\text { 5. } \begin{gathered}
(4 x+5 x)(4 x-5 y) \quad 16 x^{2}-35 y^{2} \\
\text { 6. } \left.m^{2}+2 n\right)\left(m^{2}-2 n\right)(5 y)^{2} \\
m^{4}-4 n^{2}
\end{gathered}
$$

Write a polynomial that represents the area of the yard around the pool shown below.

Write a polynomial that represents the shaded area of the figure below.

Special Products of Binomials

Perfect-Square Trinomials

$$
\begin{aligned}
& (a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=(a-b)(a-b)=a^{2}-2 a b+b^{2}
\end{aligned}
$$

Difference of Two Squares

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

LET'S PLAY WITH ALGEBRA TILES

HOMEWORK

Pg. 194-195 (1-19)

