Exponentials Study Guide

Objective: Be able to identify exponential growth/ exponential decay.

- 1. Is it Exponential Growth or Decay?
- a. $f(x) = 7(2)^x$ Growth + b>1
- $b. f(x) = 10 \left(\frac{1}{3}\right)^x$
- Decay + f(x) = (1)x be1
- $d. f(x) = 5(0.4)^x$ Decay

Objective: Be able to write an exponential function and find a value from it.

2. Write the Exponential Function for each table.

	P	to the cacin
x 1	3 2	At 0, it 3 would be x3 2 becase
2	9 2	2.3. 4
3	$\frac{27}{32}$	(f(x)= 2. (3/x)
4	81 128	Au Comment

X	y	
-1	1	ا ا
	10	K S
0	1	
	$\frac{1}{2}$	k /
1	5/2	r (
100	.2	5
2	25 V	
	$\frac{\overline{2}}{2}$	¥ :
3	125	
	2	

- 3. Mr. Allen bought a used Infiniti car for \$16, 790. It is depreciating at a rate of 6% per year.
 - f (e)= 16,790 (.94) a. Write a function for this situation
 - b. What is the average rate of change for the first two years? Interpret it in context
 - f(2)= 14,835.64 f(d)= 16,790
- 14. 835.64 16790
- -977.18
- 4. In the absence of predators, the number of squirrels on Vanderbilt's campus is tripling each year. The population begins with 250 squirrels.
 - a. Write a function for this situation.
- f(t) = 250(3)
- b. How long will it take the population to reach 10,000 squirrels?

Objective: Be able to graph exponential function transformations. (and know domain, range, end behavior, and asymptotes)

5. Graph the Exponential Function and describe its key features.

J	$y=2^{x+3}$	3+2	lef+	3, up 2
		10		
	10 -8 -6	-4 -2 0 -4 -2 2	2 . 4	6 8 10
		-4-		
		10		

Domain	(-00,00)	
Range	(2, 20)	
x - intercept	NONE	
y – intercept	10	
Asymptote	y-2	
End Behavior	x3-00, f(x)3	
and the same of th		

parent:
$$f(x) = 2^{x}$$

$$-4 = 4 \quad \cancel{2} \quad \cancel{2$$

Objective: Be able to write compound interest formulas two ways.

8. Ms. Bolus has \$25,000 invested at a rate of 1% compounded quarterly.

a. Write a compound interest function for the situation using t as your exponent. Round to four decimal places.

 $f(t) = 25,000 (1 + \frac{1}{4})^{44}$, $f(t) = 25,000 (1.0025)^{44}$, $f(t) = 25,000 (1.0025)^{47}$. Find out how much Ms. Bolus has in the bank after 6 years.

b. Find out how much Ms. Bolus has in the bank after 6 years.

≈ \$ 26,538.00

Objective: Be able to interpret exponential functions written different ways.

9. a. Three physicists describe the amount of a radioactive substance, Q in grams, left after t years:

Physicist 1: $Q = 250 \left(\frac{1}{2}\right)^{\frac{1}{6}}$ Physicist 2: $Q = 250(0.8909)^t$ Physicist 3: $Q = 198.426(0.8909)^{t-2}$

a. WITHOUT graphing, show that all three of these are equivalent.

b. Which expression highlights the decay rate each year? Why? What is the percent decay each year?

c. Which of the expressions highlights what the amount of radioactivity is after 2 years?

Physicist 3

d. Which expression highlights the half-life (the time taken for the radioactivity of a specified isotope to fall to half its original value) of the radioactive substance? Why? What is the half-life?