Solving Linear Systems in Three Variables

Use elimination to solve each system of equations.

1.
$$\begin{cases} x + y + z = 4 \\ 2x - y + z = 3 \\ -4x + 2y - z = -1 \end{cases}$$

a. Eliminate the variable *z* by adding the last 2 equations

$$2x - y + z = 3$$

 $-4x + 2y - z = -1$

- c. Solve this system of 2 equations for *x* and *y* using elimination.
- d. Substitute *x* and *y* into one of the original equations and solve for *z*.
- e. Write the solution as an ordered triple.

	x + y + 2z = 3
2.	x-y-z=0
	3x - 2v - z = 1

$$x + y + z = 4$$
$$-4x + 2y - z = -1$$

3.
$$\begin{cases} 4x + y + 3z = 0 \\ 2x - 2y - z = 10 \\ 3x - 2y + 2z = 11 \end{cases}$$

4.
$$\begin{cases} 3x + 4y - z = 1 \\ 3x - y - 4z = -3 \\ x + 3y - 3z = 9 \end{cases}$$