1. $(x, y) \rightarrow(-x,-y)$

$$
\begin{array}{ll}
A(4,3) \rightarrow A^{\prime}(-4,-3) & =A^{\prime}(-4,-3) \\
B(3,1) \rightarrow B^{\prime}(-3,-1) & =B^{\prime}(-3,-1) \\
C(-2,1) \rightarrow C^{\prime}(-(-2),-1) & =C^{\prime}(2,-1) \\
D(2,4) \rightarrow D^{\prime}(-2,-4) & =D^{\prime}(-2,-4)
\end{array}
$$

rotation of 180° around the origin
2. $(x, y) \rightarrow(x+5, y)$

$P(-4,2) \rightarrow P^{\prime}(-4+5,2)=P^{\prime}(1,2)$
$Q(-1,3) \rightarrow Q^{\prime}(-1+5,3)=Q^{\prime}(4,3)$
$R(-3,-3) \rightarrow R^{\prime}(-3+5,-3)=R^{\prime}(2,-3)$
translation 5 units right
3. $(x, y) \rightarrow\left(x, \frac{1}{3} y\right)$

$D(1,3) \rightarrow D^{\prime}\left(1, \frac{1}{3} \cdot 3\right) \quad=D^{\prime}(1,1)$
$E(3,-3) \rightarrow E^{\prime}\left(3, \frac{1}{3} \cdot-3\right)=E^{\prime}(3,-1)$
$F(-3,-3) \rightarrow F^{\prime}\left(-3, \frac{1}{3}+-3\right)=F^{\prime}(-3,-1)$
vertical compression by a factor of $\frac{1}{3}$
4. $(x, y) \rightarrow(y, x)$

$K(-2,1) \quad \rightarrow \quad K^{\prime}(1,-2)$
$L(4,-3) \quad \rightarrow \quad L^{\prime}(-3,4)$
$M(-2,-4) \rightarrow M^{\prime}(-4,-2)$
reflection across the line $y=x$
5. Preimage

Image

$$
\begin{array}{lll}
A(-4,4) & \rightarrow & A^{\prime}(4,4) \\
B(-1,2) & \rightarrow & B^{\prime}(2,1) \\
C(-4,1) & \rightarrow & C^{C}(1,4)
\end{array}
$$

$(x, y) \rightarrow\left(y_{r}-x\right)$: Dotation of 90° clockwise around the origin

$$
\begin{array}{ll}
A B=A^{\prime} B^{\prime}=\sqrt{13} & \mathrm{~m} \angle A=\mathrm{m} \angle A^{\prime}=56^{\circ} \\
B C=B^{\prime} C^{\prime}=\sqrt{10} & \mathrm{~m} \angle B=\mathrm{m} \angle B^{\prime}=52^{\prime \prime} \\
A C=A^{\prime} C^{\prime}=3 & \mathrm{~m} \angle C=\mathrm{m} \angle C^{\prime}=72^{\circ}
\end{array}
$$

The transformation preserves length and angle measure.

6. Prelmage
$J(0,3) \rightarrow J^{\prime}(-3,0)$
$K(4,3) \quad \rightarrow \quad K^{\prime}(-3,-4)$
$L(2,1) \xrightarrow{\rightarrow} L^{\prime}(-1,-2)$
$(x, y) \rightarrow(-y,-x)$; inflection across the line $y=-x$

$$
\begin{aligned}
K L=K^{\prime} L^{\prime}=\sqrt{8} & \mathrm{~m} \angle K=\mathrm{m} \angle K^{\prime}=45^{\circ} \\
\Omega L=J^{\prime} L^{\prime}=\sqrt{8} & \mathrm{~m} \angle L=\mathrm{m} \angle L^{\prime}=90^{\circ}
\end{aligned}
$$

The transformation preserves length and angle measure.

10. Use the points $A(2,3)$ and $B(2,-3)$.
a. Describe segment $A B$ and find its length.

Segment $A B$ is a vertical segment that is 6 units long.
b. Describe the image of segment $A B$ under the transformation $(x, y) \rightarrow(x, 2 y)$.
$A(2,3) \rightarrow A^{\prime}(2,2.3)=A^{\prime}(2,6)$
$B(2,-3) \rightarrow B^{\prime}(2,2+(-3))=B^{\prime}(2,-6)$
The image of segment $A B$ is a vertical segment that is 12 units long.
c. Describe the image of segment $A B$ under the transformation $(x, y) \rightarrow(x+2, y)$ -
$A(2,3) \rightarrow A^{\prime}(2+2,3)=A^{\prime}(4,3)$
$B(2,-3) \rightarrow B^{\prime}(2+2,-3)=B^{\prime}(4,-3)$
The image of segment $A B$ is a vertical segment two units to the right of the original segment that is 6 units long.
d. Compare the two transformations.

Possible answer: $(x, y) \rightarrow(x+2, y)$ is rigid, because it does not change the length of the segment. $(x, y) \rightarrow(x, 2 y)$ is not rigid because it doubles the length of the segment. The segment remains vertical under both transformations.

Objective

Identify and draw translations.

WHAT IS A TRANSLATION?

Ohio State Marching Band

- https://www.youtube.com/watch?v=v3vp7H3eEfs
- Work on Translation WS with group!

What kind of Translation is this?

$(x, y) \rightarrow(x+5, y) \quad 5$ units right
$(x, y) \rightarrow(x-3, y) \quad 3$ units left
$(x, y) \rightarrow(x, y+2) \quad 2$ units up
$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}-4) \quad 4$ units down
$(x, y) \rightarrow(x-6, y+8)$
6 units left, 8 units up

Patty Paper Time!

- Draw a triangle that is smaller than a fourth of the size of the patty paper on your blank piece of paper. Label the vertices of the triangle.
- Copy the triangle onto the patty paper.
- Using your patty paper, translate your triangle to somewhere else on your paper. Label your new points with prime marks.

Patty Paper Time!

- Using your ruler, connect the preimage vertices to the image vertices.
- Measure each of these segments.
-What do you notice?
- Are these segments parallel, perpendicular, or neither?

These "segments"are... pg. 834

 Vectors!- A quantity that has both direction and magnitude.
- The initial point of a vector is the starting point.
- The terminal point is the ending point.

Translations

A translation is a transformation along a vector such that each segment joining a point and its image has the same length as the vector and is parallel to the vector.

Vector Video

- https://www.youtube.com/watch?v=A05n32BI0aY

A vector in the coordinate plane can be written as <a, $b>$, where a is the horizontal change and b is the vertical change from the initial point to the terminal point. (this is component form)

How does this connect to the Pythagorean Theorem?

What would the vector be?

$$
\begin{array}{ll}
(x, y) \rightarrow(x+5, y) & <5,0> \\
(x, y) \rightarrow(x-3, y) & <-3,0> \\
(x, y) \rightarrow(x, y+2) & <0,2> \\
(x, y) \rightarrow(x, y-4) & <0,-4> \\
(x, y) \rightarrow(x-6, y+8) & <-6,8>
\end{array}
$$

Your Tum

4. Draw the image of $\triangle A B C$ after a translation along \vec{v}.

(B) Preimage coordinates: $A(3,0), B(2,-2)$, and $C(4,-2)$. Vector $(-2,3)$

Prediction The image will be in Quadrant \qquad

Preimage coordinates (x, y)	${ }^{\text {Image }}$
(3, 0)	$(1,3)$
$(2,-2)$	$(0,1)$
$(4,-2)$	2, 1

Your Turn

Draw the preimage and image of each triangle under a translation along $\langle-4,1\rangle$.
5. Triangle with coordinates:
$A(2,4), B(1,2), C(4,2)$.

6. Triangle with coordinates:
$P(2,-1), Q(2,-3), R(4,-3)$.

Try It Out!

- Draw a Triangle with coordinates $\mathrm{T}(5,5) \mathrm{R}(5,7)$ and $Y(8,5)$
- Use the Vector $<-6,-6>$ to translate the triangle

Try It Out!

- Draw a Triangle with coordinates B (1, 1) O $(3,2)$ and $L(5,1)$
- Use the Vector $<-3,-4>$ to translate the triangle

Try It Out!

- Make your own triangle and vector!

Exit Ticket

-What did you learn today?
-What mistakes were you making?

HOMEWORK

$$
\text { pg. } 839 \text { (1-10) }
$$

2.

3.

4. Line segment $\overline{X Y}$ was used to draw a copy of $\triangle A B C . \overline{X Y}$ is 3.5 centimeters long. What is the length of $A A^{\prime}+B B^{\prime}+C C^{\prime}$? 10.5 cm
5. Triangle: $A(-3,-1)$;
$B(-2,2) ; C(0,-1)$; Vector: $\langle 3,2\rangle$

6. Triangle: $P(1,-3)$;
$Q(3,-1) ; R(4,-3)$; Vector: $\langle-1,3\rangle$

7. Triangle: $X(0,3)$;
$Y(-1,1) ; Z(-3,4)$;
Vector: $\langle 4,-2\rangle$

8. Find the coordinates of the image under the transformation $\langle 6,-11\rangle$.

$$
\begin{array}{ll}
(x, y) \rightarrow(x+6, y-11) & (2,-3) \rightarrow(8,-14) \\
(3,1) \rightarrow(9,-10) & (4,-3) \rightarrow(10,-14)
\end{array}
$$

9. Name the vector. Write it in component form.
$\overline{\mathrm{GH}},\langle 5,-2\rangle$

10. Match each set of coordinates for a preimage with the coordinates of its image after applying the vector $\langle 3,-8\rangle$. Indicate a match by writing a letter for a preimage on the lin in front of the corresponding image.
A. $(1,1) ;(10,1) ;(6,5)$
C
C
$(6,-10) ;(6,-4) ;(9,-3)$
B. $(0,0) ;(3,8) ;(4,0) ;(7,8)$
D
$(1,-6) ;(5,-6) ;(-1,-8) ;(7,-8)$
C. $(3,-2) ;(3,4) ;(6,5)$
A
$(4,-7) ;(13,-7) ;(9,-3)$
D. $(-2,2) ;(2,2) ;(-4,0) ;(4,0)$
B
$(3,-8) ;(6,0) ;(7,-8) ;(10,0)$
