Warmup

Are the triangles congruent? Explain why or why not.

Are the triangles congruent? Explain why or why not. Write the congruence statements for each pair of sides or angles in your explanation. Given: C is the midpoint of both $\overline{A E}$ and $\overline{B D}$.

- $\overline{\boldsymbol{A C}} \cong \overline{\boldsymbol{E C}}$ because \mathbf{C} is the midpoint of $\overline{\boldsymbol{A E}}$.
- $\overline{\boldsymbol{B C}} \cong \overline{\boldsymbol{D C}}$ because \mathbf{C} is the midpoint of $\overline{\boldsymbol{B D}}$.
- $\angle A C B \cong \angle E C D$ because vertical angles are congruent.
- So the triangles are congruent by SAS.

10.

Congruent, by SSS congruence; $\bar{S} \cong \overline{T Q}$
because they have the same measure,
$\overline{R T} \cong \overline{R T}$ by the reflexive property, and
$S T \cong \overline{Q R}$ because they have the same measure.
12.

Possibly congruent, depending on the lengths of the unlabeled sides.
11.

Not congruent, because only one
triangle has an interior angle of 51° so
there is no rigid motion that will map
one to the other.
13.

Not congruent. The diagrams show a
total of 4 different side lengths, but
two congruent triangles have only 3
different side lengths.
14. Carol bought two chairs with triangular backs. For what value of x can you use a triangle congruence theorem to show that the triangles are congruent? Which triangle congruence theorem can you use? Explain.

$(x=4)$
$G H \cong T U$ and $G I \cong T V$, because they have the same measure.
So, if $H I \cong U V$, th $\triangle G H I \cong \triangle T U V$ by the SSS Triangle Congruence Theorem.

$\overline{P S} \cong \overline{R Q}, \overline{P R} \cong \overline{P R}, \angle S P R \cong \angle Q R P$, and $\angle S P R$ and $\angle Q R P$ are included by congruent corresuanding sides. $\triangle S P R \cong \triangle Q R P$ b SAS.
4.

$\overline{D E} \cong \overline{G H}$ and $\overline{E F} \cong \overline{H J}$, but included angles $\angle E$ and $\angle H$ are not congruent. The triangles are not congruent, because there is no sequence of rigid motions that maps $\triangle D E F$ onto $\triangle G H J$.
3.

$\overline{A B} \cong \overline{D B}, \overline{B C} \cong \overline{B C}$, and $\angle A B C \cong \angle D B C$, and $\angle A B C$ and $\angle D B C$ are included by congruent corresponding sides.
$\triangle A B C \cong \triangle D B C$ by SAS.
5.

$\overline{A B} \cong \overline{A B}, \overline{C B} \cong \overline{D B}, \angle A B C \cong \angle A B D$ and $\angle A B C$ and $\angle A B D$ are included by congruent corresponding sides. $\triangle A B C \cong \triangle A B D$ by SAS.

$2 x=x+4 ; x=4 ; \triangle A B C \cong \triangle D E F$ by SAS whe x is 4 .
7.

$2 x+14 \sim$ ax; $x=7 ; \triangle A B C \cong \triangle D E F$ by $S A S$ when x is 7 .

What if...

We only knew two sides of two triangles and a nonincluded angle? Would that be enough to determine congruence?

A Video...

https://www.khanacademy.org/math/geometry/congruence/triangle-congruence/v/more-on-why-ssa-is-not-a-postulate

SSA is not a shortcut!

Write down when it is not a shortcut.

SAS b
angle included
angle

two ∂ a son induded ongle is Nat enays WFo

an

exception to the rule

 Remember: For right triangles... triangles A Pythagorean theorem
hypgtenuse

$$
a^{2}+b^{2}=c^{2}
$$

HL Congruence (Special Case of SSA) Hypotenuse - Leg
Definition If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.
this is because of the

$$
\triangle A B C \cong \triangle D E F
$$ Pythagorean Theorem!

Example of HL Congruence

Triangle Angle Sum Theorem

All of the angles in a triangle sum to 180 degrees

\# parther Discuss with your

Do you think that AAA works as a shortcut?

- In other words, if we know all of the angles of two triangles are congruent, do we know that the two triangles are congruent?

AAA is not a shortcut!

Write down why it is not a shortcut.

similar triangles

An included side is the common side of two consecutive angles in a polygon. The following postulate uses the idea of an included side.

$\overline{P Q}$ is the included side
of $\angle P$ and $\angle Q$.

ASA Congruence

If two angles and the included side of one triangle are congruent to two angles and
 the included side of another triangle, then the triangles

$\triangle A B C \cong \triangle D E F$

 are congruent.
Example of ASA Congruence

Determine if you can use ASA to prove $\Delta N K L \cong \Delta L M N$. Explain.

$\angle K L N \cong \angle M N Z$
At interior Ls
$S \overline{L N} \cong \overline{L N}$ Reficxile paps
A

AAS Congruence

If two angles and a nonincluded side of one triangle are congruent to the corresponding angles and nonincluded side of another triangle, then the triangles are congruent.

Example of AAS Congruence

Given: $\overline{J L}$ bisects $\angle K L M$

Determine if you can use AAS to prove that the triangles are congruent.

AAS

Homework

ASA pg. 1007-1008 (3-6)
AAS pg. 1060 (1-7)

